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1. 

which had been proposed by o thers  (see [ 4 ] )  fo r  non-linear l e a s t  squares 

problems. 

between Newton's method (ac tua l ly  the Taylor Ser ies  or Gauss method f o r  non- 

l i n e a r  l eas t  squares) and the gradient or  s t eepes t  descent method. The 

method produces a cor rec t ion  v e c t m  t c  the cur ren t  i t e ra te  whose length and 

o r i en ta t ion  is control led by an adjustable  parameter A .  Marquardt produced 

an algorithm f o r  choosing A a t  each i t e r a t ion .  

on a v a r i e t y  of problems, e.g. [6]. It is general ly  more s t a b l e  than the  

Taylor Se r i e s  method and faster  than the s t eepes t  descent method. 

Introduction. I n  [5], Marquardt developed and extended an i t e r a t ive  method 

Marquardt's paper demonscrates t h a t  the method i s  an in t e rpo la t ion  

The method has worked w e l l  
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2. 

Hilber t  space. 

15  1 has i t s  counterpart i n  Hilber t  space; however a l l  of t he  proofs are new. 

The Method i n  Hilber t  Space. This paper extends the  method t o  (real) 

It tu rns  out that each of t he  three  theorems i n  Marquardt 

L e t  X and Y be r e a l  Hilber t  spaces, F a non-linear operator F: X +Y. 

Then the least squares problem may be s t a t ed  as, fo r  fixed y E Y, minimize 

over X the  functional 

2 
Q(x) = 11 Y-F(x) 11 = <Y-F(x), y-F(x)> (2.1) 

L e t  x be the f i r s t  approximation t o  an x that minimizes Q. L e t  P be 

denote 

0 * 
t he  Frechet der ivat ive of F, with increment h; P = P(x)h, and le t  P 

t h e  ad jo in t  of P. 

self-adjoint ,  and posi t ive.  

i.e., t he re  exist  constants  B,, B, such tha t  P133,X, and 

* 
Then the  operator A: X - X, where A = P (xo)P(xo), is linear, 

We assume that A i s  s t r i c t l y  pos i t ive  and bomded, 

B2Gu,x> < <Ax,x> 5 Bl<X,X> (2 2) 

for a l l  x E X. 

The gradient of Q a t  x increment h, is  -2<y-F(x 1, P(xo)h>. Alternatively,  
0 ’  0 

apa r t  from the constallt -2, we can express the gradient a t  x . a s  the 

Zunc t i ona l  

0 

* 
g = p (xo)[Y-F(x,)l; (2 3) 

.g i s  an element of X. 

Putt ing d = x-x TIC  define 
0’ 

Qh(d) = <y-F(xo) -P (x,) d, y-F(xo) -P (x,) d>; & /  

i s  b i l i n e a r  i n  d and w i l l  be a good approximation t o  Q i n  a s u f f i c i e n t l y  

small neighborhood of x i.e., f o r  small d. We s h a l l  cal l  a set of points  
0’ 
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{ x : 6 (d) 5 p} f o r  f ixed p an e l l i p so id .  

For A 2 0,  we write 

(A + U ) d  = g. (2.4) 

We note that when X - 0, (2.4) is  j u s t  t h e  usual "normal equation" of least 

squares, and d = A-'g determines the  unique minimum of $(d). 
A 

Theorem 1 suggests 

t h e  way i n  which (2.4) can be used t o  construct  a method f o r  minimizing Q(x). 

The proof is similar t o  the st ronger  vers ion of Marguardt's Theorem 1 contained 

i n  Meeter 17 1. A s  t h i s  paper w a s  being wr i t ten ,  we discovered e s s e n t i a l l y  the 

same r e s u l t ,  with a d i f f e r e n t  proof and motivation, i n  Balakrishnan [ I  1, 

pp. 160-161. 

THEOREM 1. - L e t  do be t h e  polu t ion  of (2 .4)  f o r  a f ixed  value of A ?  0. - Then 
& 

d determines t h e  minimum of Q everywhere except over t h e  i n t e r i o r  of t h e  

e l l i p s o i d  Sa: {x:c(d) ,<:(do)}. I n  pa r t i cu la r ,  do minimizes Q uniquely over t h e  

0 

sphere @ centered at  x wi th  rad ius  11 doll . 
0 

PROOF. We f i r s t  observe t h a t ,  i n  t h e  usual least squares manner, $2 can be 

expressed as the  set of a l l  d such tha t  
h h 

<A(d-d), d-d > - < CU, 
A 2  w h e r e  cu = c(do) - 11 y-P(xo) -P (xo) d 1 I . 

The f i r s t  a s s e r t i o n  of the theorem i s  obvious, s ince  equa l i ty  holds 

i n  (2.5) only for boundary poin ts  of Q, and from t h e  o r i g i n a l  d e f i n i t i o n  of 

Q w e  see t h a t  d is a boundary point. 
0 

More importantly f o r  t h e  purposes of t h e  i t e r a t i v e  method, we show 
h 

that the  sphere @ centered a t  x i s  included i n  the  region i n  which Q is 
0 
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minimized by do. 

found i n  Morrison [ 9 1, or  use t h e  argument found i n  Meeter [ 7 1. 

There a r e  many ways t o  do t h i s .  One could adapt t h e  proof 

Here w e  

show that 

Also, f o r  

t he  in t e r sec t ion  of 0 and B cons i s t s  of t h e  point d . 
F i r s t  we note  t h a t  from (2 .4)  and t h e  d e f i n i t i o n  of d, 

0 
A 

-Ado A(do-d) (g-Xdo) - AA g = -1 A 

a l l  d i n  @, 

so t h a t  we can say 

with equal i ty  holding only i f  d = do. Now take some point 2 i n  a. We have 

The f i r s t  term i s  non-negative. From (2.6), t he  second term is 

- 
Applying (2.7), t he  second term is also non-negative, and zero only i f  do = d. 

(If 1 = 0, do 3: d, Sa is a point and the  theorem i s  a t r i v i a l  r e s u l t ) .  

f o r  d E! (P, 

Thus, 

n 6 

< A(d-d), d-d > > U) 

unless  d = do, which proves t h a t  Q and 611 have only the  point 

This  implies that the  unique min imum of  Q over (9 i s  a t t a ined  at  d 

d i n  c0-n. 
I 

-w 

0 

0.  

Now l e t  us regard do, t h e  so lu t ion  of (2.4), as a function of X. 

i s  given by 

A 

way of con t ro l l i ng  t h e  length of d 
0 

TIDEOREM 2. 11 d-(X)II i s  a continuous, s t r i c t l y  decreasing funct ion of X such 
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PROOF. 

Then, from (2 .4) ,  

L e t  dl = do(Al), d2 = do(h2), A1-A2 = y . 

(A+AII)dl = (A+k21)d2 , 
A(d -d ) + A (d -d ) 1 2  2 1 2  - Ydl- or  

Thus , t ak ing  norms , 
2 li dill = Y-211 (A+51)(d1-d2) II 

ll d21I2 = v-211 (A+hlI) (dl-d*) I1 
Similar ly ,  we can obtain 

2 

Then 

11 d21?- 11 dl If = 1. L (A+llI) (dl-d2) t (A+Alf) (dl-d2) 

- (A+A21) (dl-d2) (A+A21) (dl-d2)> 1 
1 2 2-A ) < d -d ,d -d > + 2(A1-h2) C A(dl-d2) , dl-d2> . = Y-2 [(Al 2 1 2 1 2  

The expression in square brackets has the  same s ign  as A -A 1 2, 

i f  dl = d2, so that w e  can assert 11 dlII 

is  strictly decreasing. 

Using (2.8), and holding A2 fixed, with A 1 > A 2 ,  

and is  zero only 

2 2 < 11 d211 when A 1 > A2, i.e., 11 do(X) 11 

(2.9) 

L e t t i n g  X1 -+a, shows t h a t  11 do(Q + 0. 

To show that 11 do(l)II is  a continuous function of X, from (2.8) we 

Obtain 
= -(h -A )(A+AII) -1 dpy 

dl'd2 1 2  
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thus 

(2.10) 

F I X ~  (2-2) w e  know that < (A+AlI)x,x> - > 

8, is f ixed and pos i t ive .  

constant  > O2 (A+A7I)-' exists and 11 (A+A,I)-'Il 5 p . 
A, > 0, we see from (2.10) t h a t  11 d -d 11 + 0 as xl -. A2, hence 11 dill + 11 d211 

as 

(P2+Xl) G,x>, f o r  a l l  x E X, where 

> - E ~ P ~ ,  where E i s  some 

Holding A, f ixed,  

Thus, as long a s  X 1-  
1 

L J. - 
1 2  - 

2' + X2, proving 11 do(A) 11 is continuous a t  X 1 -- 
iThe connection between t h i s  method and the gradient  method, and a 
i 

means of con t ro l l i ng  t h e  o r i en ta t ion  of t h e  cor rec t ion  vector,  is  es tab l i shed  

bY 

THEOREM 3, 

funct ion of 

The angle a! between do and g i s  a continuous, s t r i c l l y  decreasing 

1. A s  A -+my a! -. 0, and d r o t a t e s  toward g. 
0 

# 

PROOF. W e  w i l l  make frequent use of t he  f a c t  t h a t  t he  operator  A+AI and i ts  

inverse  are l inea r ,  se l f -ad jo in t ,  s t r i c t l y  pos i t ive ,  and bounded. For convene 

2 ience, we w i l l  show cos a! i s  increasing, where 

2 -1 2 cos a! = <g, (A+XI) g> / I 1  g 11 211 (A+AI)"glf '. 
The denominator of cos a! is a continuous funct ion of A, from Theorem 2. 

for t h e  numerator, using t h e  notat ion of Theorem 2, 

As 

IC g,d1' - < g, d 2 4  = 1<9,d1-dq>/ 5 II gl I I1 d1-d211 3 

and holding A2 fixed, we know 11 dl-d211 + 0 a s  A --* X2 . 
1 

Hence cos a! i s  t h e  r a t i o  of two continuous functions so a! i s  a continuous 

func t ion  of A, A - > 0.  

2 Now we examine t h e  behavior of cos a! i n  a small neighborhood of some 

For lyl  s u f f i c i e n t l y  small, A+(X+y)I is  a s t r i c t l y  pos i t i ve  f ixed  value of A. 
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se l f -ad jo in t  operator. Writing B = A+XI, 

-1 -1 -1 -1 -1 
I 

(B+YI)-' = (B-'(B+~I)) B = ( I + ~ B  B . 
Ne make the  one-to-one transformation g = Bz, so t h a t  f o r  small Iyj,  fixed 1, 

2 -1 -1 2 -1 -1 cos a! = < Bz,(I+yB ) z> / < Bz,Bz> <(I+yB-')-'z, (Ii-yB ) z >. 

We can choose IyI small enough t o  have IIyB'lll < 1. 

series expansion of t h e  operator (I+$3 ) w i l l  be convergent. The numerator 

(2.11) 

Accordingly, t he  power 

-1 -1 
, 

of (2.11) can be rewr i t ten  as 

The remaining f a c t o r s  i n  (2.11) are wri t ten as - - -1 

(2.13) 

Thus t o  show cos'a is s t r i c t l y  increasing, we need only t o  show t h a t  t he  term I 

i n  square brackets is  s t r i c t l y  posit ive.  That is, we must show t ha t  

From Schwarz's inequal i ty ,  for any w, 
2 c w,s> < Bw,Bw> > < w,Bw> , (2.15) 

unless  w and Bw are l i n e a r l y  dependent. But i f  w and Bw are l inea r ly  dependent 
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2 -1 then B = PI, implying e i t h e r  cos a 3 I, or  w = 0. 

where C = B. Since z = B g, w 0 because g f 0. ( I f  g { 0 w e  have achieved 

But we w i l l  r equi re  w = C Z, 

2 -1 

a relative minimum of Q, and i t e r a t i o n  ceases.) 

reduces (2.15) t o  (2.14). 

The subs t i t u t ion  w = C-'Z 

Thus, f o r  a l l  1 2  0, cos is a continuous, s tr ictly 

increasing function of A. 

A similar technique shows tha t  cosa + 1 as h + a  . Briefly,  for' 
2 X > 0, we rewrite cos cz as 

2 -1 -1 2 
cos 01 = <8,(I+X A) g> / <g,g> < (I+A-'A)-'g, (I+X-'A)-'g> . 

For X s u f f i c i e n t l y  large,  w e  can again use the  power series expansion t o  obtain 

which shows t h a t  cos a + 1 as A +OD. 

g as X -+-. 
Since g i s  fixed, d rotates towards 

0 

A convergence proof for  t h e  method may be obtained as w a s  done by 

Tornheim [lo] f o r  Euclidean n-space. L e t  S = {xs : Q(x) 5 xo}. 

THEOREM 4. 

suppose there  exists po > o such that  IQ"(x,h,h){ 5 lbII 2/po for  a l l  XCS. h a .  

Then i t  is possible t o  choose a sequence X 

downward t o  a l i m i t ,  where xrrtl-xn = dn + (An + X n I )  

n PROOF. The above conditions are  su f f i c i en t  t o  insure t h a t  by correc t ing  X 

with  a vector pg , pX, we can by proper choice of p have Q(x n +pg) < Q(xn), 

11 gnll # 0. 

and Q(x) is continubus, Thcorcps 2 and 3 i n d i c a t e  t ha t  i t  will always be 

poss ib le  t o  choose An su f f i c i en t ly  large tha t  Q ( X ~ ~ ) < Q ( X ~ ) -  

Suppose Q(x) has a second (Gateaux) der iva t ive  Q"(x,h,h), and 

such t h a t  Q(xrrtl) converges n 
-1 gn, n = O , l , .  . . . 

n 

See Goldstein 121. Since d n has a pos i t ive  project ion on g n' 

- 

Since Q(X) i s  

bounded below, the sequence converges downward t o  some l i m i t .  
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3 .  

Section 2 i s  ac tua l ly  a type of in te rpola t ion  between the Taylor Se r i e s  o r  

The Connection wi th  Newton's Method. Although the method as developed i n  

Gauss Method and the gradient  method, w e  can a l s o  regard it as connecting 

Newton's Method and the gradient  o r  s teepes t  descent method. i 
-c 

Suppose now t h a t  I: is a noniinear operator  FS-X where X I s  a r e a ?  

Hi lbe r t  space. I f ,  f o r  sone s&X, a so lu t ion  t o  the equation 

F(x) = 0 (3 .1)  

exists, and F has a Frechet der iva t ive  P(x,h), Newton's method f o r  solving 

(3 .1)  i s  w r i t t e n  a s  the sequence 

n = 0 , l  ..., derived by equating t o  the zero vector a l i n e a r  approximation t o  

F a t  x . See Kantorovich [3 ]  or Moore [ 8 ] .  I f  w e  put d = x - x and 

def ine  again the l i nea r  se l f -ad jo in t  operator A = Pk(x )P(x ), w e  ob ta in  from 

n n n+l n' 

n n 

(3 .2)  

= Pfr((x )F(xn). n - Adn (3 .3)  

On the  o ther  hand, i n  order  t o  solve (3.1) by the gradient  method, w e  might 

seek to  solve the  funct ional  equation 

f (x )  = <F(x),F(x)> = 0 

t o  x n n by making our cor rec t ion  g proportional t o  the negative gradient  of 

fh), or 
g a -2P+k(x )F(xn), n n 

which would mean t h a t  our method would determine d from n 

(A+AI)dn = 6,Y 

as before.  

the  same l i n e a r  approximation t o  a nonlinear operator F, perhaps the designation 

Since both the Taylor Series-Gauss and Newton methods begin with 

Newton-Gradient" can be j u s t i f i e d  on the grounds of euphony. 11 
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A t  a l a t e r  da t e  w e  hope t o  be able  t o  inves t iga t e  the more d i f f i c u l t  

questions of regions and spccds of convergence, and present  examples. 
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